Testing the effect of refined glycerol byproducts on improving nutrition ability of soils

László Tolner^A, **Imre Czinkota**^A, Gabriella Sándor^B, Kata Tolner^A

A Szent István University,
Faculty of Soil Science and Agricultural Chemistry,
Gödöllő, Hungary

B Folklore Highschool, Fót, Hungary

Sustainable BIODIESEL product

21:18 21:18

Glycerol phase & plant nutrients

All not oil soluble materials are in the glycerol phase

- Nproteins, mineral forms
- P
 phospholipids, organic
 phosphates
- Ksalts, catalyst (KOH)

Aim of our research

Hypothesis:

The Glycerol can be one of the important nutrients to microorganisms in the soil.

The residual Methanol is toxic.

Objectives:

- ► Glycerol as microbial feed,
- Methanol as a bactericid,
- N,P,K content of glycerol phase as nutrients
- Directed in the soil have a strong effect on the nutrition providing abilities of the soil.

EXACTLY what is this effect?

If the C/N rate of the fresh material moves on a wide scale, the nitrogen gets temporary immobilized

METHODOLOGICAL development

■ For measuring plants grow, we developed a method, to avoid destruction of plant samples.

METHODOLOGICAL development

A computer program was developed to calculate the number of green pixels in front of a black background

Calibration

- \blacksquare 4 replications (4 x 10 = 40 pots)
- 10 times taking photos and cutting four pots (4., 6., 8., 10., 12., 14., 16., 18., 20., 22. days)
- Calculation of the green pixels
- Drying the plant samples and measuring their weights
- Linear regression analysis between the green pixel number and mass of yield

Calibration

Glycerol experiment

- Calcareous sandy soil
- Continuous watering to maintain 60 % of saturation percentage
- Taking picture in every second days
- Calculation the green pixels
- Calculation the yield using the calibration function
- Investigation of 1m KCl soluble N content of soil

Glycerol experiment

Treatments:

PK: 100 ppm P₂O₅ and K₂O as KH₂PO₄ and K₂SO₄,

NPK: PK + 100 ppm N as NH_4NO_3 ,

Gycerol: NPK + 0.5 % C as glycerol,

By-prod.: NPK + 0.5 % C as by-product,

Methanol: NPK + 0.5 % C as methanol,

G50-M50: NPK + 0,5 % C as glycerol(50%) and methanol(50%),

G85-M15: NPK + 0,5 % C as glycerol(85%) and methanol(15%).

Results – Soil N analysis

More organic compounds (glycerol)

- -> Number of microorganism is increasing
- -> The soil N is significantly decreasing

Without glycerol the 1m KCl soluble Soil-N does not decrease in two weeks experiment

Results-Fitted function for yield

- Logistic function
- A maximum yield [g]
- k kinetic parameter [day-1]
- t₀ time of maximal grow [day]

PK NPK Glycerol Metanol G50-M50 G85-M15 By-prod.

A	0.29	0.37	0.09	0.25	0.29	0.28	0.06
k	-0.77	-0.90	-0.47	-0.70	-0.49	-0.68	-1.29
t_0	7.25	7.60	13.75	7.01	7.77	9.88	14.54

Results-Effect of glycerol

Results-Effect of glycerol

More organic compounds

- -> Number of microorganisms is increasing
- -> The available N to soil is decreasing
- \rightarrow The plant growing rate and the yield in given time are decreasing (t_0)

Results-Effect of glycerol-methanol mixtures

Results-Effect of glycerol-methanol mixtures

- The glycerol and by-product are decreasing the plant growth
- Methanol is toxic to microorganisms, there is no decreasing effect
- In G-phase by-product experiments there was no microbial toxic effect of 21:18 methanol observed

CONCLUSIONS

- Plant production is temporarily decreasing as an effect of Glycerol treatment. The water soluble Soil-N is decreasing, because microorganisms consume the available N in soil.
- Methanol alone or mixed with glycerol inhibit the growth of microorganism therefore decreasing the plant depressing effect.
- In experiments with by-product there is no toxic effect of methanol, as a conclusion this constituted the most important influence: methanol controls microorganisms hunger for nitrogen and there remains available soluble N for plants.

21:18

CONCLUSIONS

Is this effect harmful?????? It is not sure!

- The immobilized nitrogen is prevented for leaching and after the death of microorganisms it is available again for the plants.
- ► It is important for the plant nutrition, and environmental protection.

Just we have to know it, and use it adequately

Thank you for your attention