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ABSTRACT 
 
 Soil fertility is influenced by the joint effect of a number of factors. The vastly 
increasing number of experimental treatments required as the number of variables increases 
causes problems when multivariate response functions are estimated, as does the 
interpretation of the large number of parameters in the correlation. Interpretation is 
complicated by the fact that the more parameters the correlation contains, the greater the 
problem caused by the interdependence of the estimated parameters. 
 It is possible to estimate the parameters independently and to reduce the number of 
experiments to a realistic level if the experiments are set up according to an orthogonal factor 
design, though these designs are not suitable for calculating the parameters of Baule-
Mitscherlich function containing combinations of exponential terms. 
 The multivariate extension of the parabolic response function recommended here 
leads to a quadratic polynomial form, the parameters of which can be reasonably estimated by 
applying an orthogonal factor design. The interpretation of the model parameters was 
investigated considering the optimum values of the individual  factors and the possible 
characteristics  of the available nutrient forms in the soil. 
 
INTRODUCTION 
 
 An ever-green problem encountered in soil fertility research is the agronomic 
interpretation of the often non-linear effects and interactions of the many factors. The first 
attempts at solving the problem of requirements that are difficult to meet simultaneously 
involved concentrating on the effect of one factor and ignoring that of the other factors. 
 A univariate linear correlation was suggested by Liebig (1862) to describe the effect of 
factors at a relative minimum level. It was found that the linear correlation was only valid 
over a certain limited range. Mitscherlich (1909) recommended a saturation equation as a 
response  function. The basic idea was that the crop yield increment (dy/dx) is proportional to 
the distance between the actual yield (y) and the maximum yield (A) (proportionality factor: 
k) due to the effect of that factor which is at the level of relative minimum (x). 

dy

dx
k A y= ⋅ −( ) 

The relationship between the yield (y) and the given factor (x) is obtained by integrating the 
above differential equation. 

y A e k x= ⋅ − − ⋅( )1  

In case of extremely high values the effect of any factor may turn to negative, and the plants 
can even die. Mitscherlich (1928) characterised the effect according to the previous equation 
modified by the introduction of a damaging factor. 

y A e ek x c x= ⋅ − ⋅− ⋅ − ⋅( )1  
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 Liebscher (1887) proposed a quadratic parabolic equation to describe the relationship 
between the active factor and the yield. 

y a b x c x= + ⋅ + ⋅ 2 
Despite of  its simplicity, this model is able to describe both the positive effects and negative 
ones. 
 The agrochemical interpretation of the parabolic response function was attempted by 
Di Gléria (1959), based on the assumption that the crop yield increase or decrease (dy/dx) is 
proportional to the difference between the necessary nutrient quantity M for the maximal 
yield and the just available one (x) 

dy

dx
K M x= ⋅ −( )  

where K is the proportionality factor. Integrating this differential equation gives a quadratic 
parabola as the model, the mathematical description of  the response in question: 

y A
x

M

x

M
= ⋅ −( )

2 2

2
 

where A is maximum crop yield at a value x = M. When expressed by the terms of  K and M, 

it has a value of : A
K M= ⋅ 2

2
. 

 From the point of view of plant nutrition, the response function representing the 
correlation between the applied nutrients and the yield is of outstanding importance. By 
transforming the above model, Di Gléria (1959) made the parabolic function suitable for the 
description of this correlation.  
 If the available quantity of the nutrient in the soil is  b and the applied (therefore 
known) quantity is z, in that case the available nutrient quantity for the plants is x=b+z. If 
maximum yield (A) can be achieved by the application of the nutrient quantity B in that case  
the total quantity of nutrients required by forming A includes the quantity b which was 
present in the soil before the fertilization i.e.: M = b + B. If these are substituted into the 
above equation, we obtain: 

( ) ( ) ( )
y

A B b

b B

A B

b B

A

b B
= ⋅ ⋅ ⋅

+
+ ⋅ ⋅

+
⋅ −

+
⋅2 2

2 2 2z z2  

 The parameters of this parabolic response function can be estimated by regression 
calculation using the data of the various nutrient treatments and the corresponding yields. The 
parameters obtained can be interpreted in agrochemical sense: A is the maximum yield, B the 
nutrient quantity distributed to achieve A yield, and b the available nutrient quantity in the 
soil (Di Gléria 1959). 
 Despite of  the fact that the greater part of the nutrient effect is really caused by the 
factor functioning at the level of relative minimum, the effects of the other  factors are 
negligible only if the supplying of the other nutrients as factors exists on a satisfactory level 
and the factor of relative minimum in question causes an extreme nutrient deficiency. The 
more demand is to supply the balanced plant nutrition, the more importance is to consider the 
joint effects of all the factors. 
 The multifactorial models can be derived by the combination of unifactorial model. In 
an effort to expand the Mitscherlich model (1909), Baule (1953) suggested to multiply the 
uniform function-terms of the various single factors. 

 

y A e e ek x k x k x= ⋅ − ⋅ − ⋅ − ⋅− ⋅ − ⋅ − ⋅( ) ( ) ( ) ...1 1 11 1 2 2 3 3  
In spite of its relative complexity, this model is not suitable for the description of the 
damageous effects and interactions, respectively. 
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 The model of Di Gléria (1959) can be transformed into a multifactorial function in a 
similar way. The result of the transformation is a multivariate polynome. In the case of 
normalised variables the terms of higher exponents can be ignored and the multivariate 
quadratic polynome proves a good approximation (Biczók 1988, Tolner and Biczók 1989). 
The parameters of the model can be estimated by setting up and evaluating experimental 
treatments prescribed by quadratic orthogonal factor design (Box and Wilson 1951, Nalimov 
and Chernova 1965, Kafarov et al. 1976, Adler et al. 1977).  Further on it is an relevant 
information that the treatments are varied on five levels of the individual factors. If the 
number of the regulated factors in question is n and all the individual factors are varied on 
five different levels the traditional, frequently used fertilization experiments require the 
adjustment of  5n  treatments. It would mean a cumbersome, superfluous work in comparison 
with the prescription of quadratic orthogonal factor design that can support not only much 
smaller number of  treatments (2n+2n+1) but the independent estimate of the model 
parameters, too.  
 In order to compare the traditional and quadratic orthogonal design - depending on the 
number of the experimental factors - the Table 1 presents the number of treatments adjusting 
5 levels of factor. According to the figures in Table 1  it must be obvious why the 
multifactorial model was not widely used in the earlier period of agricultural experimentation. 
 This model, together with the so-called SITOBI software supporting its application, is 
gaining ground under the name DISITOBI in agrochemical and soil microbiological research 
in Hungary. The designation is derived from the names of the scientists involved in its 
elaboration (Di Gléria, Simán, Tolner, Biczók). Though the model is being applied ever more 
widely (Loch et al. 1986, Kis et al. 1986, Loch et al. 1987, Németh et al. 1993, Abd El Galil 
et al. 1993, Szili Kovács et al. 1993), no attempt has yet been made to give an agrochemical 
interpretation of the model parameters. In the present paper there is an intention to introduce 
the designing and parameter estimating method for agrochemical and soil microbiological 
experimentators and to interpret the model parameters. 
 
MATERIAL AND METHODS 
 
 The advantage of orthogonal factor designs is especially obvious when more than two 
factors must be jointly considered. In the course of plant nutrition experiments it is advisable 
to study the joint effect of as many adequate variables as possible. For this reason orthogonal 
factor designs are not reasonably used for bivariate experiments. However, the method can be 
best demonstrated introducing the simplest bivariate case as an example of the fictive 
experiment on fertilizer effect. Let us take wheat as the test plant and fertilisers containing N 
and P active agents as the factors to be studied. The N treatment range from 0-120 kg/ha and 
the P treatments from 0-180 kg/ha active agents are adjusted according to a quadratic 
orthogonal factor design. The experimental treatments and the corresponding yields are 
demonstrated in Table 2.  
 Before carrying out the calculations the values of the variables should be normalised. 
 

x
value of mean of

upper value of mean ofi =
−

−
( . .var.) ( . .var.)

( . . .var.) ( . .var.)
 

In the case of the N treatments this means that 

x
N

N = −
−
60 2

110 602

.

.
. 
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The response function described by the normalized factors is the following bivariate parabolic 
function: 

y b b x b x b x x b x d b x dN P N P N P= + + + + − + −1 2 3 4 5
2

6
2( ) ( ) 

or using matrix designations: 
Y B X= ⋅  

 The experimental design (Nalimov and Chernova 1965) can be written in matrix form 
( X ) and the yields in vector form (Y ). The design matrix contains the normalized numeric 

values of the treatments related to the constant in the first column, the linear terms (x xN P, ) in 
the second and the third columns, the interaction term (x xN P ) in the fourth column and the 
quadratic terms (x dN

2 − , x dP
2 − ) in the fifth and the sixth ones.  

 
 

X

d d

d d

d d

d d

d d

d d

d d

d d

d d

d d

d d

d d

=

+ + + + − −
+ − + − − −
+ + − − − −
+ − − + − −
+ + − −
+ − − −
+ + − −
+ − − −
+ − −
+ − −
+ − −
+ − −

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 0 0

1 0 0

1 0 0

1 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

2

2

2

2

α α
α α

α α
α α

  

Y e =

65

50

55

35

6 0

4 0

6 0

4 5

55

54
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56

.

.

.

.

.

.

.

.

.

.

.

.

 
 
 If the values of a (1.21) and d (0.58) are reasonably chosen, this design is orthogonal, 
which means that the product of any two column vectors in the design matrix (X ) is equal to 

zero. The advantage of the orthogonal design matrix becomes clear in the course of linear 
regression calculations.  The sum of residual square (SQ) can be calculated by the difference 
between the experimentally measured yield values (Ye) and the calculated ones (Y) 

SQ Y Y Y Ye
T

e= − −( ) ( ) 
approaching the best fitting, the values of the regression coefficients (bi), i.e. vector B , can be 
obtained using a formula derived from the equation expressing the minimum sum of residual 
squares: 

B X X X YT T
e= −( ) ( )1  

After calculating the information matrix, it is clear why the orthogonality of the design matrix 
is so important 
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X XT =

12 0 0 0 0 0

0 6 9 0 0 0 0

0 0 6 9 0 0 0

0 0 0 4 0 0

0 0 0 0 4 3 0

0 0 0 0 0 4 3

.

.

.

.

 

  
 In the course of the calculations the scalar products obtained by multiplying the 
column vectors of the design matrix (X ) by themselves form the main diagonal, while all the 

other components of the information matrix, obtained by multiplying different column 
vectors by each other, have a value of zero. This enables us to determine the bi model 
parameters (i.e. the regression coefficients) independently of each other (Kafarov 1976). 

 
 
DISCUSSION 
 
 The values of the parameters (bi) are obtained by carrying out the regression 
calculation. Using normalised variables, the response function can be written, as follows: 

 

y x x x x x xN P N P N P= + + + − −5 47 100 0 48 013 0 59 0 082 2. . . . . . . 

                                              ***         ***          *             ***          + 
 
If the Student probe of the bi  was proved significant on the level of 0.1 % probability it was  
marked by  *** , on the level of  5 % probability the mark of  *  was applied  and on the level 
of 10 % probability the mark of  +  was used (below  the regression coefficients). The 
variance of the yield values was estimated by the help of the yield values related to the 4 
central treatments (9-12) - as it is shown in the Table 2. 
 
Substituting the normalized variables by their defining formulas 
 

x
N

N = − 60 2

498

.

.
 x

P
P = − 865

715

.

.
 

 
into the bivariate response function  (described by the normalized variables)  the quadratic N-
P response function is obtained as follows: 

 

y N P NP N P= + + + − −2 9 0 046 0 0073 0 000035 0 00024 0 0000162 2. . . . . .  
 

The calculated response function is illustrated as a graph of trajectories (Fig. 1). 
 
 By  formal analysis of the response function, remarkable answers can be obtained for 
important questions concerned with plant nutrition: 
 
 1. What is the maximum yield which can be obtained by optimising treatments of a given 

type? 
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 2. What is the fertilizer equivalent effect of the soil nutrient quantity, i.e. in other words: 
how much of the nutrient quantity in the soil manifests its own "availability"? 

 
 3. What yields can be expected according to the various treatment combination values? 
 
 The adequate fertilizer dose belongs to the maximal yield value can be calculated as a 
derivate of the response function. When the general coefficients are used in the equation, the 
multivariate quadratic response function has the next form: 
 

y = a + a N + a P + a N P - a N - a P0 N P NP N

2

P

2
2 2  

 
At the point giving maximum yield (N=MN, P=MP), both the increase and the decrease of 
either the N or the P doses prove the least effect on the yield. The limiting value of the yield 
change is zero as it is shown by the next partial differentials: 
 

δ
δ

y
N N NP P N Na a M a M= + + ⋅ =2 02  δ

δ
y
P P NP N P Pa a M a M= + + ⋅ =2 02  

 
By solving this bivariate equation system and by substituting the relevant coefficient values 
(ai), the values of N and P treatments required for maximum yield (MN, MP) can be 
calculated. 
 

M =
a a a a

a a a
=

0.0073 0.000035+ 2 0.046 0.000016

4 0.00024 0.000016- 0.000035N
P NP N P

N P

2 2

2

2 2
NP

− ⋅
⋅ −

⋅ ⋅ ⋅
⋅ ⋅

=
2

4
122 2.  (kg/ha) 

 
 

M =
a a a a

a a a
=

0.046 0.000035+ 2 0.0073 0.00024

4 0.00024 0.000016- 0.000035P
N NP P N

N P

2 2

2

2 2
NP

− ⋅
⋅ −

⋅ ⋅ ⋅
⋅ ⋅

=
2

4
3618.  (kg/ha) 

 
 

By substituting the values of MN and MP into the response function, the value of the 
maximum yield (A) can be calculated: 
 

A = a + a M + a M + a M M - a M - a M0 N N P P NP N P N N
2

P P2 2
2  

 
The calculation showed the maximum yield (A) to be 7 t/ha. 
 
 If the response function is examined when one of the variables is constant, we obtain 
the univariate parabolic function derived by Di Gléria (1959). If the constant chosen is P = 0 
 

y = a + a N - a N0 N N

2
2 . 

 
This is a univariate section of the bivariate response function (Fig. 2). It can be seen from the 
figure that this parabola crosses the N axis at two points, where y=0. In the case of the 
treatments characterised by these points, there is no crop yield expected according to the 
prediction of the model. 
 The extrapolation of function beyond the real range of measurement must be carefully  
and informally handled, since going on to the remote points of the treatment scale the interval 
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of confidence is getting wider and wider depending on the distance of the central point of 
factor design. In addition to this, the model must lose its validity due to the well-known and 
unknown plant physiological switches of regulative threshold-values, if the symptoms of 
toxicity occur at the extreme level of any factor. 
 The quantity of available soil-N is designated QN (Fig. 2) which - assuming a positive 
sign - is the N quantity required to give a yield of y

0 in the N=0 treatment. Thus, the value of 
QN is the N-fertilizer equivalent of the soil-N, i.e. it is the value of available nutrient 
estimated by the response function. At point LN (Fig. 2) the yield is as well as zero, i.e. this 
treatment has poisoned the plant evenmore occasionaly it may be a lethal dose. 
 These two values can also be determined by calculations if the univariate parabolic 
function is solved for y=0. 
 

Q
a a a a

aN

N N N

N

=
− + ⋅

⋅

2
04

2

2

2   

L
a a a a

aN

N N N

N

=
+ + ⋅

⋅

2
04

2

2

2  
 

The results of the calculation are: QN = -49.8, LN = 241.4, QP = -254.6 and LP = 717.9 
(kg/ha). Thus, the available N calculated from the response function is 49.8 kg/ha and the 
available P is 254.6 kg/ha. 
 
Similarly to the example presented here, the experiments planned to study the effects of more 
than two factors can also be designed and evaluated. 
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