

FACULTY OF AGRICULTURAL AND ENVIRONMENTAL SCIENCES, GÖDÖLLŐ

STIMULANT AND TOXIC EFFECT OF BIOMASS ASH DOSAGE IN POT EXPERIMENT

<u>László TOLNER</u> – István ZIEGLER – György FÜLEKY – Miklós GULYÁS – Gabriella RÉTHÁTI

SZIE, Institute of Environmental Sciences, Department of Soil Science and Agricultural Chemistry

tolner.laszlo@mkk.szie.hu

INTRODUCTIONS

- The main energy source on the earth is the sunlight
- The energy of the fress biomass, and fossil fuels originated from the sunlight also
- Burning of carbon-based fuels since the industrial revolution has rapidly increased its concentration

in the atmosphere,

leading to global warming.

• The carbon cycle is a closed system when we use biomass.

- Not only a closed carbon cycle is important
- The other biogeochemical cycles (nutrients) have to be closed also

Results of biomass burning: AIR $(\underbrace{C_6H_{10}O_5}_{n})_n + 6.O_2 = 6.CO_2 + 5.H_2O$ $R - S - H + O_2 \rightarrow SO_2$ $R - NH_2 + O_2 \rightarrow NO_x \text{ or } N_2$

 $K^+ + O_2 \rightarrow K_2O + CO_2 \rightarrow K_2CO_3$ $Ca^{++} + O_2 \rightarrow CaO + CO_2 \rightarrow CaCO_3$ CaHPO₄, Ca₃(PO₄)₂, M₂O, MO, M₂O₃

Minerals - nutrients:

- K, Ca, P, microelement compounds are nutrients
- Plant accumulates the toxic microelements too
- Minerals are enriched in ash (ash < 10% biomass)
- Strong basics: KOH, K₂CO₃, Ca(OH)₂ in ash

MATERIALS AND METHODS

- Pot experiment was made
- Soil: collected from the first plot of Westsik's crop rotation long-term field experiment.

It is a loose sandy soil, slightly acid, low in OM.

• **Bioash** originated from Alfen Ltd., Almásfüzitő, chopped wood used by the heating facility.

Sample	pH(KCl)	Humus m m ⁻¹ %	Ca mg kg ⁻¹	P ₂ O ₅ mg kg ⁻¹	K ₂ O mg kg ⁻¹
Soil	5.26	0.76	1280	54.3	93.5
Bioash	13.0		116000	1060	4730

MATERIALS AND METHODS

• Test plants:

- ryegrass (Lolium perenne),
- white mustard (Sinapis alba)
- Each pot contains 800 g soil.
 - 1 g (550-600 grains) ryegrass or
 - 25 grains of white mustard were seeded to the pots.
 - •
 - Ash treatments (calculated to t.ha⁻¹):
 - in ryegrass experiment 0, 1.29, 6.21, 10, 20, 30, 40, 50, 60 t ha⁻¹,
 - in mustard experiment: 0, 1, 5, 10, 20, 30, 40, 50, 60 t ha⁻¹
 - The treatments were replicated three times

Ryegrass dry matter (g)

Bioash treatments have effect on ryegrass dry matter production (p<0,1%)

The amount of ash dosage till 10 t ha⁻¹ increased, 10-40 t ha⁻¹ the effect is stagnate, over 40 t ha⁻¹ decreasing tendency was measured

RESULTS What kind of connection can be between the ash treatments and the dry mass production?

We try fitt the next mathematical form of function:

$$y = a * x + b * \sqrt{x} + c$$

Calculation of parameters (a, b, c) made by fitting a curve of second degree after this transformation was used:

$$u = \sqrt{x}$$

The transformed function:

$$y = a * u^2 + b * u + c$$

Representing the dry mass production with this function "u" we got the point around a more symmetrical maximum curve

The transformed function:

$$y = a * u^2 + b * u + c$$

Representing the dry mass production with this function "u" we got the point around a more symmetrical maximum curve

Excel's trend function of second degree we got the curve of function:

```
y = -0,007084 * u^2 + 0,056879 * u + 0,146467
```

Maximum value can be determined by derivation. In maximum value the derivative of function equal zero.

dy/du = -2*0,007084*u max + 0,056879=0

 \mathbf{u}_{max} calculable with the equation. The result is 4.015.

 \mathbf{x}_{max} is the square of it = 16.12.

The optimal dosage was 16 t ha-1 in case of Ryegrass.

Calculated parameters (a, b, c) help to write the function of curve: $y = -0.007084 * x + 0.056879 * \sqrt{x} + 0.146467$ $R^2 = 0.7677$

The effect on white mustard was consolidated

Bioash has no significant affect below 20 t ha⁻¹, but the higher doses caused considerable decreasing and fluctuation.

Conclusions

- The effect of different biomass ash dosage were investigated in pot experiment on Ryegrass and White mustard.
- The optimal dosage was 16 t ha⁻¹ in case of Ryegrass. Significant effect was not found on White mustard below 20 t ha⁻¹.
- The agricultural use of biomass ash in small concentration works as a stimulant but higher concentrations have toxic effect on plants.

Thank you for your attention!

Szent István Egyetem Mezőgazdaság- és Környezettudományi Kar, 2100 Gödöllő, Páter Károly utca 1., www.mkk.szie.hu