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ABSTRACT

Soil fertility is influenced by the joint effectfa number of factors. The vastly
increasing number of experimental treatments requas the number of variables increases
causes problems when multivariate response furktiare estimated, as does the
interpretation of the large number of parametersthe correlation. Interpretation is
complicated by the fact that the more parametegsctirrelation contains, the greater the
problem caused by the interdependence of the dstihparameters.

It is possible to estimate the parameters indegahdand to reduce the number of
experiments to a realistic level if the experimearts set up according to an orthogonal factor
design, though these designs are not suitable doulating the parameters of Baule-
Mitscherlich function containing combinations ofpexential terms.

The multivariate extension of the parabolic reggorfunction recommended here
leads to a quadratic polynomial form, the paransetémvhich can be reasonably estimated by
applying an orthogonal factor design. The integdreh of the model parameters was
investigated considering the optimum values of ihgividual factors and the possible
characteristics of the available nutrient formshia soil.

INTRODUCTION

An ever-green problem encountered in soil feytilesearch is the agronomic
interpretation of the often non-linear effects antractions of the many factors. The first
attempts at solving the problem of requirementd #ra difficult to meet simultaneously
involved concentrating on the effect of one faeand ignoring that of the other factors.

A univariate linear correlation was suggested igpig (1862) to describe the effect of
factors at a relative minimum level. It was fouritt the linear correlation was only valid
over a certain limited range. Mitscherlich (1908tammended a saturation equation as a
response function. The basic idea was that the yiedd increment (dy/dx) is proportional to
the distance between the actual yield (y) and thgimum yield (A) (proportionality factor:
k) due to the effect of that factor which is at l&xeel of relative minimum (x).

¥ -kiga-y)
The relationship between the yield (y) and the gifactor (x) is obtained by integrating the
above differential equation.

y=Adl-e™)
In case of extremely high values the effect of &aggor may turn to negative, and the plants
can even die. Mitscherlich (1928) characterisedetffect according to the previous equation
modified by the introduction of a damaging factor.

y = Aml— e—k[X) @—c[x



Liebscher (1887) proposed a quadratic paraboliat&on to describe the relationship
between the active factor and the yield.
y=a+bX+cX?
Despite of its simplicity, this model is able tesgribe both the positive effects and negative
ones.
The agrochemical interpretation of the parabadgponse function was attempted by
Di Gléria (1959), based on the assumption thattbg yield increase or decregsly/dx) is
proportional to the difference between the necgseatrient quantityM for the maximal
yield and the just available 0@
& =KIOM -x)
dx
where K is the proportionality factor. Integratitigs differential equation gives a quadratic
parabola as the model, the mathematical descripfiaihe response in question:
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where A is maximum crop yield at a value x = M. Wlexpressed by the terms of K and M,

2
ithas avalue of: A= KM .

From the point of view of plant nutrition, the pemse function representing the
correlation between the applied nutrients and tieédyis of outstanding importance. By
transforming the above model, Di Gléria (1959) mtdeparabolic function suitable for the
description of this correlation.

If the available quantity of the nutrient in theilss b and the applied (therefore
known) quantity is z, in that case the availablérieat quantity for the plants is x=b+z. If
maximum yield (A) can be achieved by the appligatid the nutrient quantity B in that case
the total quantity of nutrients required by formiAgincludes the quantity b which was
present in the soil before the fertilization i.81:= b + B. If these are substituted into the
above equation, we obtain:

B 2[ADBD1)+ 2[AB ., A ’
(b+B)" (b+B)"  (b+B)

The parameters of this parabolic response funatemm be estimated by regression
calculation using the data of the various nutrteedtments and the corresponding yields. The
parameters obtained can be interpreted in agroda¢sense: A is the maximum yield, B the
nutrient quantity distributed to achieve A yielshdab the available nutrient quantity in the
soil (Di Gléria 1959).

Despite of the fact that the greater part ofrib&ient effect is really caused by the
factor functioning at the level of relative minimurthe effects of the other factors are
negligible only if the supplying of the other netnis as factors exists on a satisfactory level
and the factor of relative minimum in question @usn extreme nutrient deficiency. The
more demand is to supply the balanced plant nutrithe more importance is to consider the
joint effects of all the factors.

The multifactorial models can be derived by thenbmation of unifactorial model. In
an effort to expand the Mitscherlich model (190Baule (1953) suggested to multiply the
uniform function-terms of the various single fastor

y=AQl-e ™) [Q1-e ") [Q1-e )0,
In spite of its relative complexity, this model mot suitable for the description of the
damageous effects and interactions, respectively.



The model of Di Gléria (1959) can be transformad ia multifactorial function in a
similar way. The result of the transformation ismaltivariate polynome. In the case of
normalised variables the terms of higher exponeats be ignored and the multivariate
guadratic polynome proves a good approximation2@ic1988, Tolner and Biczok 1989).
The parameters of the model can be estimated bngetp and evaluating experimental
treatments prescribed by quadratic orthogonal fagsign (Box and Wilson 1951, Nalimov
and Chernova 1965, Kafarov et al. 1976, Adler etlél77). Further on it is an relevant
information that the treatments are varied on fieeels of the individual factors. If the
number of the regulated factors in questiom snd all the individual factors are varied on
five different levels the traditional, frequentlysad fertilization experiments require the
adjustment of Streatments. It would mean a cumbersome, superfluauk in comparison
with the prescription of quadratic orthogonal factiesign that can support not only much
smaller number of treatments™{2n+1) but the independent estimate of the model
parameters, too.

In order to compare the traditional and quadmtibogonal design - depending on the
number of the experimental factors - the Tableels@nts the number of treatments adjusting
5 levels of factor. According to the figures in Tall it must be obvious why the
multifactorial model was not widely used in thelieaperiod of agricultural experimentation.

This model, together with the so-called SITOBIltaafre supporting its application, is
gaining ground under the name DISITOBI in agrocloainand soil microbiological research
in Hungary. The designation is derived from the esnof the scientists involved in its
elaboration Di Gléria,Siman,Tolner, Biczok). Though the model is being applied ever more
widely (Loch et al. 1986, Kis et al. 1986, Locha&t1987, Németh et al. 1993, Abd El Galil
et al. 1993, Szili Kovéacs et al. 1993), no attetmgs yet been made to give an agrochemical
interpretation of the model parameters. In thegrepaper there is an intention to introduce
the designing and parameter estimating method doochemical and soil microbiological
experimentators and to interpret the model paraimete

MATERIAL AND METHODS

The advantage of orthogonal factor designs is@aibheobvious when more than two
factors must be jointly considered. In the coursplant nutrition experiments it is advisable
to study the joint effect of as many adequate Wéemas possible. For this reason orthogonal
factor designs are not reasonably used for biveagaperiments. However, the method can be
best demonstrated introducing the simplest bivarigdse as an example of the fictive
experiment on fertilizer effect. Let us take whasatthe test plant and fertilisers containing N
and P active agents as the factors to be studlesl NTtreatment range from 0-120 kg/ha and
the P treatments from 0-180 kg/ha active agentsadjasted according to a quadratic
orthogonal factor design. The experimental treatmemd the corresponding yields are
demonstrated in Table 2.

Before carrying out the calculations the valuethefvariables should be normalised.

_ (value.of .var.) —(mean.of .var.)
~ (upper.value.of .var.)- (mean of .var.)
In the case of the N treatments this means that
N -602
Xy =—————.
11C-602




The response function described by the normaliaetbfs is the following bivariate parabolic
function:
y =b +b,xy +bXs +bx X + bs(xri —d)+ bﬁ(Xg —d)
or using matrix designations:
Y=BIX
The experimental design (Nalimov and Chernova 1868 be written in matrix form
(X) and the yields in vector forn¥§. The design matrix contains the normalized numeri

values of the treatments related to the constattiteirfirst column, the linear terms,(, x;) in
the second and the third columns, the interac#om t(x, x,) in the fourth column and the
quadratic termsx(, —d, x2 —d) in the fifth and the sixth ones.

+1 +1 +1 +1 1-d +d 6.
+1 -1 +1 -1 1-d +d 5
+1 +1 -1 -1 1-d +d 5
+1 -1 -1 +1 1-d +d 3
+1 +a 0 0 a°-d -d 6.
X:+1 -a 0 0 o*-d -d Xe:4.
= +1 0 +4a 0 -d a°-d 6.
+1 0 -a 0 -d a°-d 4.
+1 O O 0 -d -d 5
+1 O O 0 -d -d 5
+1 O O 0 -d —-d 5
+1 O O 0 -d —-d 5

If the values of a (1.21) and d (0.58) are reaslynehosen, this design is orthogonal,
which means that the product of any two columnaecin the design matrixX) is equal to
zero. The advantage of the orthogonal design magbomes clear in the course of linear
regression calculations. The sum of residual sg@9) can be calculated by the difference
between the experimentally measured yield valMgsapd the calculated one¥g)(

N=(Y.-Y) (Y. -Y)
approaching the best fitting, the values of theesgjon coefficientd), i.e. vectorB, can be
obtained using a formula derived from the equaéigpressing the minimum sum of residual
squares:

B=(X"X)"(X"Y,)
After calculating the information matrix, it is elewhy the orthogonality of the design matrix
is so important
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In the course of the calculations the scalar petsdwbtained by multiplying the
column vectors of the design matriX { by themselves form the main diagonal, while fad t
other components of the information matrix, obtdingy multiplying different column
vectors by each other, have a value of zero. Thables us to determine th¢ imodel
parameters (i.e. the regression coefficients) iaddpntly of each other (Kafarov 1976).

DISCUSSION

The values of the parameterb;) (are obtained by carrying out the regression
calculation. Using normalised variables, the respdunction can be written, as follows:

*k%k *k% *k%k

y=547+ 100, + 048 + 018 x,— 05§ - .068.
* +

If the Student probe of the was proved significant on the level of 0.1 % pralight was
marked by ***  on the level of 5 % probabilityg mark of * was applied and on the level
of 10 % probability the mark of + was used (belote regression coefficients). The
variance of the yield values was estimated by thip lof the yield values related to the 4
central treatments (9-12) - as it is shown in thel& 2.

Substituting the normalized variables by their wiefy formulas

. = N -602 ‘= P-865
N 498 P 715

into the bivariate response function (describedhieynormalized variables) the quadratic N-
P response function is obtained as follows:

y =29+ 0046\ + 0007B+ 0000038 - .0000%4- . 0000Pi6
The calculated response function is illustrated geaph of trajectories (Fig. 1).

By formal analysis of the response function, rd@ble answers can be obtained for
important questions concerned with plant nutrition:

1. What is the maximum yield which can be obtaibgaptimising treatments of a given
type?



2. What is the fertilizer equivalent effect of thail nutrient quantity, i.e. in other words:
how much of the nutrient quantity in the soil masik its own "availability"?

3. What yields can be expected according to thews treatment combination values?

The adequate fertilizer dose belongs to the maxymell value can be calculated as a
derivate of the response function. When the geroeraifficients are used in the equation, the
multivariate quadratic response function has the foem:

y=a,+a N+a P+ NP-a N -a°P

At the point giving maximum yield (N=N, P=Mp), both the increase and the decrease of
either the N or the P doses prove the least effedhe yield. The limiting value of the yield
change is zero as it is shown by the next parifedréntials:

Y =-a +a,.M,+2@E, M, =0 Z%=a +a, .M, +2@E .M, =0
N N np Vip N2 VIN > P np VN p2 Vip

By solving this bivariate equation system and blgssituting the relevant coefficient values
(g), the values of N and P treatments required foximam yield (My, Mp) can be
calculated.

_ 203 _ 0.007310.000035+2 0.046 0.00001

"~ 4m@.a.-&  400.0002410.000016-0.000035

?.22 2 (kg/ha)

v = &r=203 3. _0.04610.000035+2 0.0078 0.00024, . .
" 4@,3.-4  400.0002410.000016-0.000035

(kg/ha)

By substituting the values of iyl and Mp into the response function, the value of the
maximum yield (A) can be calculated:

A=a, ta, My +& M, +g, My M -4, M - & M
The calculation showed the maximum yield (A) to/bha.

If the response function is examined when ondnefvariables is constant, we obtain
the univariate parabolic function derived by Di fd€§1959). If the constant chosenis P =0

y=a,+a, N-a, N.

This is a univariate section of the bivariate resgofunction (Fig. 2). It can be seen from the
figure that this parabola crosses the N axis at pomts, where y=0. In the case of the
treatments characterised by these points, ther® isrop yield expected according to the
prediction of the model.

The extrapolation of function beyond the real monfmeasurement must be carefully
and informally handled, since going on to the reaymdints of the treatment scale the interval



of confidence is getting wider and wider dependamgthe distance of the central point of
factor design. In addition to this, the model mlose its validity due to the well-known and
unknown plant physiological switches of regulativeeshold-values, if the symptoms of
toxicity occur at the extreme level of any factor.

The quantity of available soil-N is designateq (Frig. 2) which - assuming a positive
sign - is the N quantity required to give a yiefdyoin the N=0 treatment. Thus, the value of
QN is the N-fertilizer equivalent of the soil-N, i.€. is the value of available nutrient
estimated by the response function. At poit (Fig. 2) the yield is as well as zero, i.e. this
treatment has poisoned the plant evenmore occagibmaay be a lethal dose.

These two values can also be determined by céiloogaif the univariate parabolic
function is solved for y=0.

_ay—yJay +4@a,, _ay+,/ay +4@a,,
QN - I-N -
23, 2@,

N

The results of the calculation areNG -49.8, Iy = 241.4, @ = -254.6 and p = 717.9
(kg/ha). Thus, the available N calculated from tesponse function is 49.8 kg/ha and the
available P is 254.6 kg/ha.

Similarly to the example presented here, the erpents planned to study the effects of more
than two factors can also be designed and evaluated



REFERENCES

ABD EL GALIL A., RADIMSZKY, L. BACZO, GY. and NEMEH T. 1993. Study of the
AL-soluble phosphorus content in incubation experits. Agrokémia és Talajtan 42:
179-182.

ADLER, Y. P., MARKOVA, E. V. and GRANOVSK]I, Y. V. 477. Design of experiments
for the determination of optimum conditions. idZaki Koényvkiadé Bp., Mir
Publisher, Moscow.

BAULE, B. 1953. Uber die Weiterentwicklung der BEdsgesetze von Liebig und
Mitscherlich. Z. Acker- und Pflanzenbau 96: 173-186

BICZOK,GY.(1988) Biocybernetic strategy for engirieg of soil fertility, in Model
construction use in  soil fertility control (Semiremerie) Sveriges
Lantbruksuniversitet, Uppsala, Sverige, April.

BOX, G. E. P. and WILSON, K. B. 1951. On the Experntal Attainment of Optimum
Conditions. Journal of the Royal Statistical Sogi&;, 13/1, 1.

DI GLERIA, J. 1959. Agricultural chemistry. Akadémriad6é Budapest.

KAFAROV, V. V. 1976. Cybernetic Methods in Chemysand Chemical Engineering. Mir
Publisher, Moscow.

KIS, SZ., BICZOK, GY. and TOLNER, L. 1986. Effect W fertilisation at varying P, K and
water supply levels. Chemical Products in Agrickdt86 Conference, Keszthely 203-
207.

LIEBIG, J. 1862. Einleitung in die Naturgesetze Betdbaues, 143., Braunschweig.

LIEBSCHER, G. 1887. Der Verlauf der Nahrstoffaufmemn und seine Bedeutung flr die
Dungerlahre. Journ. fir Landwirtschaft 35: 333-518.

LOCH, J., BICZOK, GY. and TOLNER, L. 1986. Mg fédigation and K-Ca-Mg antagonism.
Chemical Products in Agriculture '86 conference#lasly 62-67.

LOCH, J., KIS, SZ., VAGO, I, BICZOK, GY. and TOLNE L. 1987. Joint effect of N, P,
K, Ca, Mg and water supplies on chernozem and @as@nd. |. Yield data. Chemical
Products in Agriculture '87 conference Keszthely683

MITSCHERLICH, E. A. 1909. Das Gesetz des Minimumsl das Gesetz des abnehmenden
Bodenertrages. Landw. Jb. 38: 537-552.

MITSCHERLICH, E. A. 1928. Die zweite Annaherung dé&¥irkungsgesetzes der
Wachstumsfaktoren. Z. Pflanzenernahr. Ding. Bodea&uA 12: 273-282.

NALIMOV, V. and CHERNOVA, N. 1965. Statisticheszkienetody planirovania
ekstremalnyh eksperimentov. Izdatelstvo Nauka, Masc



NEMETH, T., ABD EL GALIL A., BACZO, GY. and RADIMSKY, L. 1993. Study of the
ammonium-N and nitrate-N contents of different sailiring incubation. Agrokémia
és Talajtan 42: 173-178.

SVAB, J. 1973. Biometric methods in research. 2wised, enlarged edition. Mégazdasagi
Kiadd, Budapest.

SZILI KOVACS, T., RADIMSZKY, L., ANDO, J. and BICZ®, GY. 1993. CQ evolution
from soils formed on various parent materials ie #astern Cserhat mountains
(Hungary) during laboratory incubation. Agrokéms&Talajtan 42: 140-146.

TOLNER, L. and BICZOK, GY. 1989. Design and evaioatof agrochemical experiments.
A Magyar Biometriai Tarsasag X. Konferencigja, Masasar.



